An improvement on the dust emission scheme in the global aerosol-climate model ECHAM5-HAM

نویسندگان

  • T. Cheng
  • Y. Peng
چکیده

Formulation of the dust emission scheme in the global aerosol-climate modeling system ECHAM5-HAM has been improved. Modifications on the surface aerodynamic roughness length, soil moisture and East-Asian soil properties are included in the parameterization, which result in a large impact on the threshold wind friction velocity for aeolian erosion and thus influence the simulated dust emission amount. The annual global mean of dust emission in the year 2000 is reduced by 76.5% and 2.2%, respectively, due to changes in the aerodynamic roughness length and the soil moisture. An inclusion of detailed East-Asian soil properties leads to an increase of 16.6% in the annual global mean of dust emission, which exhibits mainly in the arid and semiarid areas of northern China and southern Mongolia. Measurements of the surface dust concentrations are collected in remote marine sites globally and in dust source regions of East Asia. The averaged relative differences between model results and measurements are reduced from 17% to 12% in global remote marine sites and from 69% to 30% in East Asia, by including the improvements. Comparisons between model results and available measurements verify a more realistic dust distribution with the improved emission scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved dust emission scheme in ECHAM5-HAM GCM

An improvement on the dust emission scheme in the global aerosol-climate model ECHAM5-HAM T. Cheng, Y. Peng, J. Feichter, and I. Tegen Max-Planck-Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany Leibniz-Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China Ca...

متن کامل

Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number c...

متن کامل

Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convect...

متن کامل

Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying bulk aerosol models are largely constrained to linearity. The microphysical aerosol module HAM establishes degrees of freedom for nonlinear responses of...

متن کامل

Aerosol indirect effects in ECHAM5-HAM

Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM U. Lohmann, P. Stier, C. Hoose, S. Ferrachat, E. Roeckner, and J. Zhang Institute of Atmospheric and Climate Science, ETH Zurich, Switzerland Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, USA Max Planck Institute for Meteorology, Hamburg, Germany Meteorolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008